Simulation-Based Secure Functional Encryption in the Random Oracle Model

نویسندگان

  • Vincenzo Iovino
  • Karol Zebrowski
چکیده

One of the main lines of research in functional encryption (FE) has consisted in studying the security notions for FE and their achievability. This study was initiated by [Boneh et al. – TCC’11, O’Neill – ePrint’10] where it was first shown that for FE the indistinguishabilitybased (IND) security notion is not sufficient in the sense that there are FE schemes that are provably IND-Secure but concretely insecure. For this reason, researchers investigated the achievability of Simulation-based (SIM) security, a stronger notion of security. Unfortunately, the abovementioned works and others [e.g., Agrawal et al. – CRYPTO’13] have shown strong impossibility results for SIM-Security. One way to overcome these impossibility results was first suggested in the work of Boneh et al. where it was shown how to construct, in the Random Oracle (RO) model, SIM-Secure FE for restricted functionalities and was asked the generalization to more complex functionalities as a challenging problem in the area. Subsequently, [De Caro et al. – CRYPTO’13] proposed a candidate construction of SIM-Secure FE for all circuits in the RO model assuming the existence of an IND-Secure FE scheme for circuits with RO gates. To our knowledge there are no proposed candidate IND-Secure FE schemes for circuits with RO gates and they seem unlikely to exist. We propose the first constructions of SIM-Secure FE schemes in the RO model that overcome the current impossibility results in different settings. We can do that because we resort to the two following models: – In the public-key setting we assume a bound on the number of queries but this bound only affects the running-times of our encryption and decryption procedures. We stress that our FE schemes in this model are SIM-Secure and have ciphertexts and tokens of constantsize, whereas in the standard model, the current SIM-Secure FE schemes for general functionalities [De Caro et al., Gorbunov et al. – CRYPTO’12] have ciphertexts and tokens of size growing as the number of queries. – In the symmetric-key setting we assume a timestamp on both ciphertexts and tokens. In this model, we provide FE schemes with short ciphertexts and tokens that are SIM-Secure against adversaries asking an unbounded number of queries. Both results also assume the RO model, but not functionalities with RO gates and rely on extractability obfuscation [Boyle et al. – TCC’14] (and other standard primitives) secure only in the standard model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient RKA-Secure KEM and IBE Schemes Against Invertible Functions

Cryptographic Protocols Efficient RKA-Secure KEM and IBE Schemes Against Invertible Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Eiichiro Fujisaki and Keita Xagawa Simulation-Based Secure Functional Encryption in the Random Oracle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Vinc...

متن کامل

On the Achievability of Simulation-Based Security for Functional Encryption

This work attempts to clarify to what extent simulationbased security (SIM-security) is achievable for functional encryption (FE) and its relation to the weaker indistinguishability-based security (INDsecurity). Our main result is a compiler that transforms any FE scheme for the general circuit functionality (which we denote by Circuit-FE) meeting indistinguishability-based security (IND-securi...

متن کامل

Provably secure and efficient identity-based key agreement protocol for independent PKGs using ECC

Key agreement protocols are essential for secure communications in open and distributed environments. Recently, identity-based key agreement protocols have been increasingly researched because of the simplicity of public key management. The basic idea behind an identity-based cryptosystem is that a public key is the identity (an arbitrary string) of a user, and the corresponding private key is ...

متن کامل

Identity-Based Encryption from the Weil Pairing

We propose a fully functional identity-based encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming a variant of the computational DiffieHellman problem. Our system is based on bilinear maps between groups. The Weil pairing on elliptic curves is an example of such a map. We give precise definitions for secure identity based encryption schemes and ...

متن کامل

HIBE With Short Public Parameters Without Random Oracle

At Eurocrypt 2005, Waters presented an identity based encryption (IBE) protocol which is secure in the full model without random oracle. In this paper, we extend Waters’ IBE protocol to a hierarchical IBE (HIBE) protocol which is secure in the full model without random oracle. The only previous construction in the same setting is due to Waters. Our construction improves upon Waters’ HIBE by sig...

متن کامل

Lattice Based Forward-Secure Identity Based Encryption Scheme with Shorter Ciphertext

In MIST 2012 conference Singh et al [21] presented lattice based forward-secure identity based encryption schemes based on LWE assumption in the random oracle model as well as in the standard model. In this paper we propose lattice based forward-secure identity based encryption scheme with shorter ciphertext in the random oracle model. We have reduced size of the ciphertext C from (m(i+ 2)+ 1)×...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014